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Landscape-Wide Projection of 

Temperature-Driven Processes for 
Seasonal Pest Management Decision 

Support: A Generalized Approach 

Jacques Régnière 
Natural Resources Canada, Canadian Forest Service, PQ 

Jesse A. Logan 
U.S. Forest Service, Forest Sciences Laboratory, UT 

through development (rates and pathways), mortality (pros- 

tration, desiccation, freezing), reproduction (ovogenesis, 

mating, oviposition, adult longevity), and migration (trig- 

gers, rates of  departure and arrival). It can also have com- 

plex indirect effects through its influence on the synchrony 

between organisms (host plants, consumers, pathogens, 

natural enemies), on the activity (efficacy) o f  natural en- 

emies as well as on the quality o f  host plants (palatability, 

nutritional value, defences). 

Because o f  the importance o f  temperature as a driv- 

ing variable in ecology and pest management, consider- 

able effort has been devoted to the development and use 

o f  temperature-driven models to predict plant, pathogen, 

and insect seasonal biology (phenology and population dy- 

namics). A wide diversity o f  modelling approaches has been 

used (Wagner et al. 1984a, l984b; Schaalge and van der Vaart 

1988; Wagner et al. 1991) and model-development tools are 

available (Logan 1988, 1989; Dallwitz and Higgins 1992). 

There have been several recent attempts to use these 

models to forecast seasonal biology o f  poikilothermic or- 

ganisms over large heterogeneous areas (landscape level) 

(Gage et al. 1982; Ross et al. 1989; Pickering et al. 1990; 

Rock et al. 1993; Russo et al. 1993; Schaub et al. 1995). 

Much o f  this work has been concerned with wide-area pest 

management planning (efficient deployment o f  human and 

material resources for monitoring and control operations). 

Consideration o f  landscape-level processes in ecology is only 

beginning. These efforts have had to deal with two problems: 

Abstract 

A new approach to the landscape-wide projection o f  

temperature-driven simulation model outputs has been in- 

corporated into a software package named BioSIM. The pack- 

age is intended for two user groups: ecologists studying 

poikilothermic systems through the analysis o f  temperature- 

driven models; and governmental or industrial organiza- 

tions responsible for optimizing the efficiency, efficacy, and 

innocuousness o f  pest management programs. Essentially it 

consists o f  a generalization o f  the t-function method o f  

Schaub et al. ( 1995). In this paper, the approach used in BioSIM 

and the structure o f  the BioSIM software are briefly described. 

Current and potential applications in ecological research and 

pest management decision support are discussed. 

Introduction 
Insects, pathogens, and their host plants are affected 

by climate through most o f  the key biological processes, and 

population-level processes determine their abundance patterns 

in space and in time. The ability to understand, model, and 

predict the outcome o f  weather-dependent ecological proc- 

esses is key to efficient and effective ecosystem management. 

By far the most pervasive weather factor that influ- 

ences natural ecosystems is temperature, because most o f  

the organisms involved (plants, microbes, invertebrates and 

many vertebrates), are poikilotherms (or exothermic). Tem- 

perature can affect basic ecological processes directly 
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providing models with adequate input weather data, and pro- 

jecting model predictions to the landscape level. 

The first problem has two main components. First, 

there is usually a paucity o f  sources o f  weather data, and 

there are several causes o f  geographical variation in weather 

(particularly temperature). These include location (latitude 

and longitude), elevation, slope and aspect, cold-air drain- 

age, and terrain shading (Rosenberg et al. 1983). Another 

source o f  variation is the proximity o f  a significant body 

o f  water, the maritime effect. Thus, methods to identify 

adequate data sources and to compensate for differences 

in geographical context must be developed. Second, meth- 

ods must be available to forecast daily temperature fluc- 

tuations from normals.1 This problem stems from the 

so-called Kaufmann effect (Worner 1992): insect responses 

to temperature are most often nonlinear, with discontinui- 

ties near the extremes (thresholds). This prevents the use 

of normals as input to seasonal biology models because 

normals are averages and do not represent the natural vari- 

ability o f  actual weather. This problem has only recently 

been fully recognized, and few methods are available to 

restore daily variation around normals (Bruhn 1980; 

Régnière and Bolstad 1994). 

This paper is a review o f  the methods that have been 

proposed to project the outcome o f  temperature-driven 

seasonal models to the landscape level. It is also a general 

discussion o f  BioSIM, a software tool (Régnière et al. 1995a) 

designed to facilitate the development o f  landscape-wide 

projections o f  seasonal model outputs for pest manage- 

ment and ecological research. 

hatch should have occurred (the “target event”). While this 

is clearly a feasible technique, it presents three main draw- 

backs. First, the computational cost can be prohibitive when 

a relatively complex simulation model is being used. For 

example, running the spruce budworm, Choristoneura fumif- 

erana (Clem.), seasonal biology model (Régnière 1987; 

Régnière and You 1991) on a computer with a Pentium- 

133 processor requires about 3 seconds. To produce a mod- 

est 400 x 400 grid-cell map would require at least 133 hours! 

Second, this approach does not take into consideration 

sources o f  geographical variation in temperature other than 

latitude, longitude, and elevation. Finally, the Kaufmann 

effect is not considered when generating temperature re- 

gimes from normals to predict future events. 

A second approach published by Schaub et al. (1995) 

consisted o f  four steps (Figure 2). First, the seasonal biol- 

ogy model was provided with temperature data from a sin- 

gle nearby source, the base station. The model was run for 

an array o f  elevations, compensating for differences be- 

tween the simulation point and the source o f  weather data, 

with a constant elevational lapse rate (-0.5°C per 100 m). A 

linear regression model was used to relate the predicted 

target event (the date at which gypsy moth should reach 

50%  second instar) to elevation. That relationship was then 

applied to a DEM o f  the area of interest to generate a 

target-event map by simple algebraic transformation. 

Schaub et al. (1995) coined the term t-function to name 

the regression between the target event and elevation. This 

simple and efficient approach presents three main weak- 

nesses. First, the criteria used to select an adequate base 

weather station are not clearly defined, and selection of a 

single source implies a loss o f  information associated with 

dropping the other potential sources o f  weather data from 

an area. Second, the only source of geographical variation 

in temperature considered is elevation, although the ap- 

proach can be generalized. Finally, Schaub et al. (1995) did 

not address the Kaufmann effect. 

A third approach was proposed by Régnière (1996). It 

borrows some concepts from Russo et al. (1993) and is a 

generalization o f  the t-function concept of Schaub et al. 

(1 995) that allows the consideration o f  additional sources 

of geographical variation in temperature (Figure 3). It also 

deals explicitly with issues o f  weather-station selection and 

the Kaufmann effect. In this approach, simulations are run 

for a limited series of locations scattered throughout the 

area o f  interest. For example, simulation points can consti- 

tute a low-density rectangular grid, or can correspond to 

the location of weather stations in the area. At each loca- 

tion, elevation, slope and aspect are varied systematically. 

The number of simulations required is thus considerably 

reduced compared with the Russo et al. method. For ex- 

ample, simulations with the spruce budworm seasonal bi- 

ology model for a rectangular grid o f  25 points, with five 

Review of Available 
Landscape Projection Methods 

The first concerted effort to project seasonal model 

output to the landscape level was published by Russo et al. 

(1993). Their approach consisted in using multiple regres- 

sion to relate daily minimum and maximum air tempera- 

ture to the latitude, longitude, and elevation o f  all weather 

data sources in an area and generating a temperature re- 

gime for each grid cell on  a digital elevation model (DEM) 

of the area (Figure 1). 

The same approach was used whether real-time data 

or long-term averages (normals) were being used. The re- 

sulting temperature regimes were then used as input to their 

seasonal biology model. Thus one set of temperature data 

was generated and one model run was carried out for each 

cell of the DEM. The output produced was a map o f  the 

date at which 50% gypsy moth, Lymantria dispar (L.),  egg 

1 Normals are statistics (averages, extremes) taken over long periods. The 

standard normal-generating period is 30 years, starting at the beginning 

of a decade. The most recent is 1961-1990. 
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Figure 1. Diagram o f  the Russo et al. (1 993) approach to landscape-wide simulation o f  temperature-driven processes. T: 

temperature; Lat: latitude; Lon: longitude; Elev: elevation; e: error. 

elevations and seven combinations of slope and aspect, would 

require less than 45 min with a Pentium-133 processor. 

Sources o f  weather data for each simulation are se- 

lected on the basis o f  three criteria: climatic zones parti- 

tioning the area according to broad climatic considerations 

such as the maritime effect, elevational difference between 

simulation location and weather data source, and Cartesian 

distance. Differences in latitude and elevation between 

source and simulation point are compensated for by vari- 

able elevational and latitudinal lapse rates (Régnière and 

Bolstad 1994). The influence o f  slope and aspect on air 

temperature is simulated from incident radiation calcula- 

1996; Régnière 1996). Temperature forecasts from normals 

are generated stochastically to restore natural daily varia- 

tion (Régnière and Bolstad 1994) and thus accommodate 

the Kaufmann effect. Once the series o f  simulations has 

been run, a polynomial regression model is used to relate 

the “target event’’ to latitude, longitude, elevation, and slope 

and aspect. This multivariate “t-function” is then used to 

transform a DEM o f  the area into a target-event map. This 

approach is in no  way limited to the issue o f  timing. How- 

ever, for the sake of simplicity and to maintain terminol- 

ogy used by other authors, the term “target event” is 

intended here to represent any feature o f  simulation model 

output that is o f  interest. 

tions (Paltridge and Platt 1976; Hottel 1976; Bolstad et al. Description of BioSlM 
The generalized approach developed by Régnière 

(1996) offers considerable flexibility in the types of proc- 
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Figure 2. Diagram o f  the Schaub et al. (1 995) approach to landscape-wide simulation o f  temperature-driven processes. 

T: temperature; Elev: elevation; e: error. 

esses that can be investigated. Because o f  its large applica- 

tion potential in ecological research and pest management, 

this method has been implemented in a versatile and user- 

friendly computer software package called BioSIM 

(Régnière et al. 1995a). This package is intended for two 

user groups: ecologists studying poikilothermic systems 

through the analysis o f  temperature-driven models, and 

government or industry organizations responsible for op- 

timizing the efficiency, efficacy, and innocuousness o f  pest 

BioSIM consists o f  four modules, integrated through 

a graphical user interface (GUI). The first module is a da- 

tabase manager designed to develop and maintain weather 

databases, as well as the simulation models themselves. The 

second module controls the simulation models, allowing 

the user to run large numbers o f  simulations while system- 

atically varying model parameters. The third module is a 

set of analytical tools used to generate graphs, compile 

summary tables, and fit regression equations (t-functions) 

to features extracted from model output. The fourth is an 

interface between analysis results and geographical infor- 

mation systems (GIS), for further integration into the de- 

cision-making process. 

management programs. Module 1 

This component o f  BioSIM helps the user to develop 

and maintain the system’s weather databases, lists o f  simu- 

lation location coordinates, and models. BioSIM uses three 

weather databases: 

1) Normals, that are long-term statistics about 
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Figure 3. Diagram of the approach adopted in BioSIM to project temperature-driven model output features to the 

landscape level (adapted from Régnière 1996). T: temperature; Lat: latitude; Lon: longitude; Elev: elevation; 

Expos: exposure (a combination o f  slope and aspect); e: error. 

monthly extreme and average minimum and 

maximum air temperatures. 

2) Real-time data, including daily observations o f  

minimum and maximum air temperatures. 

3) 5-day min. and max. air temperature forecasts. 

All data in these databases are geographically refer- 

enced by latitude, longitude, and elevation. Also part o f  

BioSIM weather databases is a definition of regional cli- 

matic zones delineating the boundaries o f  areas dominated 

by drastically different weather influences, such as occur 

near significant bodies of  water. As an example, the prov- 

ince of New Brunswick has been divided into three cli- 

matic zones: East-shore, Bay o f  Fundy, and inland zones 

(Régnière et al. 1995b) (Figure 4). In defining these zones, 

the maritime effect was presumed to disappear within 60 

km o f  shore, or above 150 m elevation. Location lists in- 

clude geographical coordinates for which simulations are 

to be conducted. They form the basis for control o f  large 

simulation tasks, as well as the generation o f  landscape- 

wide projections. In the latter case, location lists may con- 

stitute a rectangular matrix o f  points or may list all sources 

of real-time or normals weather data in an area. 

The simulation models are independent executable 

modules. BioSIM can accommodate any number of simu- 

lation models, which can be added or deleted interactively. 

Each model in the model-base is interfaced with BioSIM 

through two accessory files that describe input parameters 

and output variables. BioSIM communicates with simula- 
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Figure 4. Map showing the three climatic zones defined in the New Brunswick Department o f  Natural Resources and 

Energy’s implementation of BioSIM (after Régnière et al. 1995b). The area delimited by a dotted line in the 

north-central portion o f  the province is that used in the BioSIM application depicted in Figure 7. 

tion models via an input-parameter file that a model reads 

at run time. There are three simple conditions for a simu- 

lation model to be compatible with BioSIM (see Régnière 

et al. 1995a for technical details). First, it must read input 

daily minimum and maximum air temperatures from a file 

format compatible with BioSIM. Second, the model must 

write output to an ASCII file, where columns contain out- 

put variables and rows represent time intervals. Third, it 

must accept the names o f  the input and output files by 

reading them from an input-parameter file, whose name is 

passed from BioSIM to the model as a command line ar- 

gument. This input-parameter file may also contain any 

number o f  other model-specific parameters that the de- 

veloper intends the user to control via BioSIM. 

Module 2 

In a single BioSIM session, users may want to run large 

numbers of simulations using different models, parameter 

settings, and locations. BioSIM’s simulation control mod- 

ule provides considerable flexibility and batch job control. 
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Figure 5. Diagram o f  BioSIM’s temperature-regime assembly procedure. 

Each simulation involves two steps: assembly of a tem- 

perature regme from the weather databases, and execu- 

tion of the selected simulation model with the assembled 

temperature regime as input and using parameter values 

specified by the user or  controlled by BioSIM. The GUI 

provides the user with access to the temperature-regime 

assembly parameters (e.g, location, elevation, slope and as- 

pect, weather-station selection criteria) as well as the mod- 

el’s input parameters (file names under BioSIM control). 

Temperature-regime assembly is a complex process that 

is hidden from the user, but that requires explanation. 

BioSIM’s temperature-regime assembler generates a com- 

plete series o f  daily minimum and maximum o r  hourly air 

temperatures for a specified period o f  time and location 

(latitude, longitude and elevation). Three functions are per- 

formed during this task (Figure 5): matching geo-referenced 

sources of weather data in the three databases to the speci- 

fied locations, adjusting selected weather data for latitude; 

elevation, and slope and aspect differences between the 

source and the specified location; and restoring random 

daily variation to temperatures estimated from as normals. 

Real-time temperature data in BioSIM’s databases are 

referenced by year. Thus, the system can run simulation 

models using either real-time weather data from past years 
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for historical reconstruction, or current-year data for sea- 

sonal forecasting. It can also use normals exclusively, to 

simulate the “normal” course o f  events. 

Geographical matching. In searching through each 

o f  the three weather databases, BioSIM defines the “best” 

source o f  data for a specified location as that station with 

the minimum Cartesian distance among the subset o f  sta- 

tions in the same climatic zone, and within a specified range 

o f  elevations from that location. The restriction on the 

elevational range between weather station and specified 

location provides an opportunity to take elevation into con- 

sideration along with Cartesian distance in the station se- 

lection process. Whenever an appropriate source o f  weather 

data cannot be found using these criteria, the limiting cri- 

terion is dropped and the search is repeated. 

Weather data obtained from the three databases are ad- 

tude between the data source and the specified location, 

by the method o f  Régnière and Bolstad (1994): 

most pronounced effect o f  exposure is found on steep 

north-northeast slopes, where temperatures can be as much 

as 6 -8°C lower than level surfaces. 

Use of normals. After selecting the best normals sta- 

tion, BioSIM generates a year’s daily minima and maxima 

based on extreme monthly and mean monthly minimum 

and maximum air temperature taken from the normals da- 

tabase. Régnière and Bolstad (1994) showed that daily tem- 

perature fluctuations about the normals are very important 

in many seasonal processes, because o f  the nonlinear na- 

ture o f  developmental responses to temperature, i.e. the 

Kaufmann effect. Even degree-day summation is nonlin- 

ear around the threshold. BioSIM generates normally dis- 

tributed and serially autocorrelated random deviations 

around normal minimum and maximum temperatures (d , 
Latitude, elevation, and exposure adjustments. 

e ): 

justed automatically for differences in elevation and lati-  

where Mn andMx
t 
are daily mean minimum and maxi- 

mum normals. In addition, d and e are correlated with 

each other to simulate warm or  cold days. The 

autocorrelation simulates the tendency to oscillate between 

cold and warm periods that is characteristic of the temper- 

ate zone. The degree o f  autocorrelation, as well as the vari- 

ance o f  these deviations, varies systematically with latitude 

and time of year (Régnière and Bolstad 1994). 

Module 3 

where Tn and Tx are source minimum and maximum 

air temperatures on day t, and Dn D x Dn
e 

and Dx
e 

are 

differences in minimum and maximum temperatures due 

to any differences in latitude (l) or elevation ( e )  between 

the specified location and the data source. Differences are 

calculated from latitudinal and elevational lapse rates, both 

o f  which vary with time o f  year. Because elevational lapse 

rates can vary considerably on a large geographical basis, 

BioSIM allows the user to specify regional lapse rates. 

BioSIM combines slope and aspect into a single “ex- 

posure” term that takes into account the amount o f  solar 

radiation that a sloped surface receives, relative to a level 

surface, on average during the year. Exposure is expressed 

by BioSIM in degrees of northern exposure (algorithm of 

Bolstad et al. 1996, adapted by Régnière 1996). Direct and 

diffuse sunlight is integrated between 11:00 and 15:00, based 

on solar trajectory calculations and under the assumption 

o f  a clear, cloudless sky. Cloudiness is taken into account 

by reducing the radiation differential between sloped and 

level surfaces proportionally to the range in daily tempera- 

ture. This is based on the observation that small ranges in 

temperatures are often associated with cloudy even rainy 

conditions. On  a clear sunny day at latitudes around 40- 

45°N, the algorithm computes differentials of ±4°C be- 

tween sloped surfaces and level ground (which i s  

commensurate with observations in forest canopies). The 

BioSIM is interfaced with the general-purpose graph- 

ics package PLT, available for DOS and Unix platforms 

(Régnière 1989, 1990, 1992), for examination o f  model 

output. BioSIM also offers a sophisticated output-analysis 

tool that can extract various types o f  features from model 

output files, compile summary tables and estimate multi- 

variate regression models relating parameter values con- 

trolled by BioSIM during simulation to the features of 

interest. Features that BioSIM can extract from output files 

include univariate statistics such as minimum or maximum 

values, the time at which these occur, the value o f  a vari- 

able at a particular time or, conversely, the time at which a 

specific value is reached. Relationships between output- 

variable features can also be established (e.g., the ratio of 

two maxima, the difference between two times). 

As an example, a series o f  simulations with the spruce 

budworm seasonal biology model was run, varying the sur- 

viva1 rate o f  sixth instar larvae between 0.05 (correspond- 

ing to a declining outbreak population) and 0.95 (far higher 

than the natural survival rate even during the outbreak de- 

velopment phase). The input temperature regimes were as- 
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sembled from normals, with coordinates corresponding to 

the Acadia Forest Experiment Station in New Brunswick 

(45°59'N, 66°22'W, 61 m elevation). Because temperature re- 

gimes generated from normals by BioSIM are stochastic in 

nature, the series was replicated five times. From the output, 

BioSIM”s analysis module derived a predicted relationship 

between sixth instar survival (the parameter varied systemati- 

cally by BioSIM during the simulation series) and end-of-sea- 

son defoliation, specified as the maximum value o f  the output 

variable containing cumulative defoliation (Figure 6). 

Module 4 

The fourth module o f  BioSIM is used to algebraically 

transform a digital elevation model of an area into a map 

of a specific feature o f  model output. This transformation 

is based on a multivariate, polynomial relationship estab- 

lished by the model-output analysis tool (Module 3) be- 

tween latitude, longitude, elevation, exposure, and the 

output feature defined by the user. For example, the spruce 

bud moth, Zeiraphera canadensis Mutuura and Freeman, phe- 

nology model of Régnière and Turgeon (1989) was run 

for a series of nine locations (in a 3 by 3 grid) over an area 

o f  northern New Brunswick between 47°00'N by 65°00'W 

and 48°00'N by 65°00'W. For each location on this grid, 

elevation was varied from 100 to 600 m, and exposure from 

-45 to +45° north. Real-time weather data from that area 

in 1993 were used as model input. The output o f  this simu- 

lation series was then submitted to multivariate regression 

analysis to express the relationship between geographical 

coordinates (Lat, Lon), elevation (Ele), exposure (Exp), and 

the date at which the frequency o f  third instar larvae in the 

simulated populations reached its maximum value (Y: date 

o f  peak third instar). The regression model used was: 

Figure 6. Relationship between simulated end-of-season defoliation and stage-specific survival during the sixth instar of 

the spruce budworm. Variation between simulations comes from stochastic air temperature data generated 

from normals for the Acadia Forest Experiment Station, New Brunswick. 
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The statistical results from this analysis are listed in 

Table 1. Elevation (both terms combined) explained 51% 

of the variation in predicted date o f  peak third instar, and 

was by far the most important factor. Next came exposure, 

with 21.5% o f  variation. Latitude accounted for 8.4%, and 

longitude for only 2.7%. The overall coefficient o f  deter- 

mination was 83.6%. Thus, the regression model provided 

a sufficiently accurate description o f  model output to pro- 

ceed with map transformation (Figure 7). It is interesting 

to note the pronounced effect o f  exposure o f  predicted 

phenology, particularly along the steeper banks o f  rivers. 

BioSIM uses the standard USGS Digital Elevation 

Model format (U.S. Geological Survey 1990) in input DEM 

as well as output TEM (target-event maps). This ensures 

compatibility o f  the system with most commercial or pub- 

lic-domain geographical information systems. Maps (either 

DEM or their transforms) can be displayed and printed by 

BioSIM, which provides extensive flexibility of scales and 

colour maps. However, the most important use o f  output 

TEMs involves their integration with other GIS databases. 

This can be done, for example, with ARC/INFO com- 

mand scripts (Geodat Inc. 1995). 

1995b). Its implementation requires an initial investment 

in the development and maintenance o f  temperature data- 

bases; modification o f  existing models to conform to sys- 

tem requirements, or development o f  new models when 

none exist for the organisms o f  interest; and acquisition 

o f  digital elevation models. Yet the benefits o f  using this 

system can vastly outweigh implementation costs. 

BioSIM is currently being used in Quebec by the De- 

partment of Natural Resources and the Société de Protec- 

tion de Forêts contre les Insectes et Maladies (SOPFIM) 

to assist in monitoring o f  spruce budworm, spruce bud 

moth, jack pine budworm (Choristoneura pinus Freeman) and 

the yellowheaded spruce sawfly [Pikonema alaskensis 

(Rohwer)]. It has been implemented in pest management 

activities against spruce budworm in New Brunswick 

(Régnière et al. 1995b) and the New Brunswick Depart- 

ment o f  Natural Resources and Energy has developed 

ARC/INFO procedures to integrate landscape-wide pro- 

jections produced by BioSIM with their other geo-refer- 

enced forestry databases (Geodat Inc. 1995). BioSIM has 

also been used to investigate the developmental potential 

of gypsy moth in Florida (Allen et al. 1993) and British 

Columbia (unpublished), and plans are in place to estab- 

lish BioSIM as a timing tool in the “slow the spread” gypsy 

moth control program in the southeastern USA. Negotiations 

are in progress concerning the use o f  BioSIM for planning 

purposes in agricultural pest management in South Korea. 

Currently, models that have been linked to BioSIM 

include a general-purpose degree-day model that can ac- 

commodate multiple sequential thresholds, and specific 

models for the spruce budworm, spruce bud moth, gypsy 

moth, hemlock looper [Lambdina fiscellaria fiscellaria 

(Guénee)], mountain pine beetle (Dendrochtonus ponderosae 

Hopkins), yellowheaded sawfly, fall armyworm (Mythimna 

anipuncta Haw.), the spruce budworm parasitoid Meteorus 

trachynotus, as well as a model o f  the interactions between 

Bacillus thuringiensis, spruce budworm, and its parasitoid 

Apanteles fumiferanae. 

BioSIM is also being used to investigate the impact of 

ics o f  the mountain pine beetle (Logan et al. 1995). These 

Latitude 2934.9 0.084 0.000 6.825 0.494 researchers are using BioSIM to determine the probable 

shift in vertical distribution o f  mountain pine beetle in the 
Longitude 948.9 0.027 0.000 -3.881 0.494 

mountains o f  the western U.S. as temperatures warm up, 

and the implications o f  such a shift for white fir, Pinus Elevation 16860.8 0.485 0.578 -0.0032 0.0058 
albicaulis Engelm., a tree species that has not been exposed 

Elevation2 859.7 0.025 0.000 0.000060 0.000008 to beetle damage. 

Conclusions 
BioSIM is a very powerful tool for the study o f  tem- 

perature-driven seasonal models in ecology (e.g., Thireau 

and Régnière1995; Cooke 1995). It can also be very useful 

in planning pest management activities (Régnière et al. 

Table 1. Regression analysis o f  the influence o f  

latitude, longitude, elevation, and exposure on  

the predicted date o f  peak third instar spruce 

budmoth, Zeiraphera canadensis, in northern 

New Brunswick (based on 1993 air 

temperature data). 

Term Sequential Partial P Value St. Dev. 

ss R2 

Intercept - - 0.021 92.47 39.97 climate change on the seasonality and population dynam- 

Exposure 6225.3 0.179 0.000 0.135 0.0067 References 
Allen, J.C., J.L. Foltz, WN. Dixon, A.M. Liebhold, J.J.Colbert, 

Exposure2 1265.6 0.036 0.000 0.00235 0.00026 J. Régnière, D.R. Gray, J.W. Wilder, and I. Christie. 1993. 

Will the gypsy moth become a pest in Florida? Fla. 
Total 34796.4 0.836 - - - 

Entomol. 76: 102-1 13. 
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Figure 7. Illustration of the map transformation process, computing a target-event map (bottom) from a digital elevation 

model (top), using a multivariate regression model. The event depicted: date o f  peak third instar Zeiraphera 

canadensis, as a function o f  latitude, longitude, elevation and exposure. 
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